Two New Weak Constraint Qualifications and Applications

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two New Weak Constraint Qualifications and Applications

We present two new constraint qualifications (CQ) that are weaker than the recently introduced Relaxed Constant Positive Linear Dependence (RCPLD) constraint qualification. RCPLD is based on the assumption that many subsets of the gradients of the active constraints preserve positive linear dependence locally. A major open question was to identify the exact set of gradients whose properties had...

متن کامل

Two New Weak Constraint Qualifications for Mathematical Programs with Equilibrium Constraints and Applications

We introduce two new weaker Constraint Qualifications (CQs) for mathematical programs with equilibrium (or complementarity) constraints, MPEC for short. One of them is a tailored version of the constant rank of subspace component (CRSC) and the other is a relaxed version of the MPECNo Nonzero Abnormal Multiplier Constraint Qualification (MPEC-NNAMCQ). Both incorporate the exact set of gradients...

متن کامل

Convex minimization problems with weak constraint qualifications

One revisits the standard saddle-point method based on conjugate duality for solving convex minimization problems. Our aim is to reduce or remove unnecessary topological restrictions on the constraint set. Dual equalities and characterizations of the minimizers are obtained with weak or without constraint qualifications. The main idea is to work with intrinsic topologies which reflect some geom...

متن کامل

New Farkas-type Constraint Qualifications in Convex Infinite Programming

This paper provides KKT and saddle point optimality conditions, duality theorems and stability theorems for consistent convex optimization problems posed in locally convex topological vector spaces. The feasible sets of these optimization problems are formed by those elements of a given closed convex set which satisfy a (possibly in…nite) convex system. Moreover, all the involved functions are ...

متن کامل

Constraint Qualifications for Nonlinear Programming

This paper deals with optimality conditions to solve nonlinear programming problems. The classical Karush-Kuhn-Tucker (KKT) optimality conditions are demonstrated through a cone approach, using the well known Farkas’ Lemma. These conditions are valid at a minimizer of a nonlinear programming problem if a constraint qualification is satisfied. First we prove the KKT theorem supposing the equalit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Optimization

سال: 2012

ISSN: 1052-6234,1095-7189

DOI: 10.1137/110843939